
9.6 Blend-Out Repairs 
One of the accepted procedures for removing a small amount of crack damage in the field is 
through the use of blend-out repairs.  These repairs are efficiently accomplished and for the most 
part, return the structure close to its original static strength and design crack growth life interval.  
This subsection addresses the type of fatigue crack growth life analysis one might conduct to 
ensure that a blend-out repair has not significantly degraded the anticipated service life of the 
structure. 

There are two basic conditions that might degrade the life of the structure as a result of blend-
out:  (1) the accidental gouging, scraping, or otherwise damaging of the material during the 
repair and (2) the development of a stress concentration site.  Both conditions must be actively 
avoided since both tend to accelerate the development of new cracks which could cause safety-
of-flight problems. 

As discussed in Section 9.5, one of the more difficult aspects of repair analysis is the definition 
of initial crack size utilized for life calculations.  If the initial crack size assumed after repair is 
greater than or equal to the initial crack size assumed during design, then the structure life after 
repair is less than or equal to the initial design life.  To determine the fractional loss (FL) in 
structural life, an engineer could utilize the ratio 

)(Blueprint Life
(Repair) LifeFL −= 1  (9.6.1) 

Alternately, the engineer could evaluate the loss in blueprint life by forming the life ratio: 

)(Blueprint Life
(Repair) LifeLR =  (9.6.2) 

For comparison purposes, it would probably be advisable to calculate both the repair life and 
blueprint life based on the same initial crack length and thereby assess the effects of stress 
concentration introduced by the blend-out operation.  To establish the crack growth life of the 
repair in an absolute sense would require that the choice of initial crack length be given careful 
engineering consideration. 

Two examples have been prepared to illustrate the types of analyses that could be conducted to 
evaluate the damage tolerance of blend-out type repairs.  Example 9.6.1 presents the calculations 
where the initial crack size for the repair is assumed to be equal to the crack size in as-
manufactured structure.  A sensitivity study is presented to demonstrate the impact that blend-out 
shape has on repair life.  In Example 9.6.2, the crack size after repair is assumed to be smaller 
than that in the as-manufactured structure, and a sensitivity study is presented to illustrate the 
effect of crack size. 
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EXAMPLE 9.6.1 Blend-Out Repair - Effect of Shape 

The angle transition component shown below periodically exhibits evidence of cracking in the 
location identified and the engineer has recommended a blend-out repair to remove all evidence 
of cracking.  Based on the manufacturer’s stress report, the tensile stress in the angle transition 
component is 27 ksi for the critical load condition.  Evaluate the damage tolerance of the 
component assuming that the initial crack size in the repair and the as-manufactured structure are 
the same (ao = 0.050 inch). 

7079-T6 Aluminum 

Thickness = 0.400 

 
Geometry of Structure with Small Crack 
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Geometry of Blend-Out Repair Assumed for Analysis 

SOLUTION: 

The damage tolerance evaluation will be based on an assessment of both the change in crack 
growth lives and the change in critical crack size.  Based on a lack of both a stress history and a 
wide area crack growth rate equation (discussed in paragraph 9.3.3), an engineer might choose a 
worst case loading environment to conduct the evaluation.  Since the stress condition is known 
(σmax = 27 ksi), the engineer could approximate the loading with a once per flight maximum 
stress of 27 ksi applied in a constant amplitude manner.  For simplicity, the minimum stress per 
flight is presumed to be zero so that the assumed loading is zero-tension (R = 0) constant 
amplitude with a stress maximum of 27 ksi.
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To conduct the life analysis, the life equation based on continuous crack growth (consistent with 
the constant amplitude loading assumption) will be utilized, i.e., life will be calculated using 
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The function f(K) describes the crack growth rate for the material and loading condition; ao and 
af are the initial and critical crack sizes, respectively.  Three elements are necessary for the life 
calculation: (1) the function f(K), (2) the stress-intensity factor relationship for the geometry, and 
(3) the critical crack size (af).  Each element will be separated determined in the paragraphs 
below; subsequently, LIFE will be determined. 

Function f(K) Established 
The function f(K) describes crack growth rate as a function of a stress-intensity factor parameter 
(such as ∆K).  As a result of the constant amplitude loading condition, the engineer would 
consult the Damage Tolerant Design (Data) Handbook [Skinn, et al., 1994] to find data 
consistent with the material and stress ratio conditions.  The data in Figure 8.11.3.1 of the DTDH 
are considered representative of the 7079-T6 aluminum alloy.  While it is possible to utilize the 
mean trend data given in tabular form, as presented in the figure, in conjunction with computer 
codes that employ table look-up schemes, it is instructive to plot the mean trend data and 
determine if a simple (power law) crack growth rate equation, i.e. 
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describes the behavior.  Both the mean trend data for the R = 0.05 data set and a power law 
equation that describes these data are presented.  The power law equation was determined 
(graphically evaluated) to be 
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Because the stress ratio (R) for the assumed loading (R = 0) and the data set (R = 0.05) are 
relatively close, no stress ratio correction factor is applied to Equation 9.6.5.  If a stress ratio 
correction must be applied to a handbook data set, it is suggested that a Walker type correction 
be considered.  The suggested Walker correction factor for aluminum alloys is given by 
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where Rdata set and Rdesired are the stress ratios associated with the Handbook data set and the 
assumed loading, respectively, and where n is the power law exponent for the data set (n = 4.09 
for the 7079-T6 aluminum data set).  A quick evaluation of the Walker equation with the 
appropriate constants shows that the crack growth rate expression given by the power law 
equation is approximately 10 percent higher than a corresponding stress ratio corrected 
expression, and thus not overly conservative for a first order approximation. 
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Data Page From the Damage Tolerant Design (Data) Handbook [Skinn, et al., 1994] 
Used in Example 9.6.1
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Data From Damage Tolerant Design (Data) Handbook Plotted and  

Compared to Graphically Established Power Law Equation 

 

Stress-Intensity Factor Establishment 
The stress-intensity factor for the blend-out cracking problem can be solved without access to 
exact finite element stress analyses through the use of some work of Dowling [1979].  For the 
purpose of providing a methodology for estimating total fatigue life (crack initiation plus crack 
propagation lives) of notched structures, Dowling needed a transition crack length that separated 
the initiation life analysis from the crack propagation life analysis.  His studies of the conditions 
controlling small crack growth behavior led him to the stress-intensity factor evaluation shown 
below.  The point M identifies the condition where the short crack stress-intensity factor (Ks) is 
equal to the long crack solution (K ).  Dowling noted that these two crack solutions provided 
reasonably accurate estimates of the finite element solution in their respective crack length 
regions.  For crack initiation life analysis, Dowling restricted crack length size measured in 
smooth fatigue samples to sizes less than the crack length associated with the point M in the 
figure.  This is because the stress concentration effect dominates in this region. 

l
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Short and Long Limiting Cases and Numerical Solution, for Crack Growing 

from a Circular Hole in an Infinite Plate (Newman) 

For the purpose of analysis, the engineer could estimate the stress-intensity factor for the blend-
out repair using a Dowling type approach where for small cracks, a short crack stress-intensity 
factor would apply, and for longer cracks, a long crack stress-intensity factor would apply.  Thus, 
for the blend-out repair, the engineer could describe the stress-intensity factor as: 
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with the short and long crack stress-intensity factors given by: 

 ak.K ts πσ121=  

and 

 )da(.K += πσ121l  

where kt is the stress concentration factor associated with the blend-out shape. 

The equations are written in a form slightly different than those presented in the figure because 
(1) the geometry of the blend-out is more in line with an edge crack rather than a central crack 
(Dowling’s solution) and (2) the crack length a is measured from the surface of the blend-out  
(see the figure for a definition of a and d).   
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Geometry of Blend-Out with Edge Crack Present 

Based on an analysis of these equations, one can see that the blend-out geometry affects the 
stress-intensity factor solutions through the stress concentration factor (kt) and blend-out depth 
(d).  An estimate of the stress concentration kt for a blend-out repair is made using the solution of 
an elliptical cut out in a plate.  For an ellipse oriented with the major axis in line with the 
direction of the stress axis, the stress concentration is given by [Mushhelishvili, 1954; Peterson, 
1974]: 
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with L and d defined as the major and minor radii of the ellipse.  As can be noted from the figure, 
L and d define a segment of a circle that we are approximating with a semi-ellipse.  Thus, if one 
has a measure of L and d for a blend-out repair, one can estimate kt and the corresponding short 
crack stress-intensity factor using the equations above. 

Critical Crack Size, af 
The critical crack size for both as-manufactured (blueprint) and repaired structure will be based 
on the Irwin hypothesis for abrupt failure, i.e., when 
  crKK =

failure occurs.  The critical stress-intensity factor is obtained by estimating the stress-intensity 
factor range required to achieve a growth rate of 1000 microinches/cycle.  Solving the power law 
equation in an inverse manner, i.e., solving 
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yields ∆K = 33.34 ksi√in  As a lower bound to this estimate, one might choose Kcr = 30 ksi√in 
for convenience.  Kcr = 30 ksi√in corresponds to a crack growth rate of 642 microinches/cycle. 
The stress-intensity factor for the blueprint structure is given by 

 a.K π121=  

whereas that for the repaired structure is given by 
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(Note that the long crack solution is being used for the repair).  In both equations, a is measured 
from the surface.  Solving for Kcr = 30 ksi√in  and the above stress-intensity factor solutions 
yields 

 af = 0.325 inch for the blueprint critical size and 

 af = (0.325-d) inch for the repair critical size. 

Life Estimating 
While the LIFE equation could be used directly for life estimates of the as-manufactured 
(blueprint) structure, the stress-intensity factor analysis requires that the integral equation be 
broken into two intervals.  For this repair analysis, LIFE is calculated using 
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where the crack size aM is associated with the transition between the short and long crack stress-
intensity factor solutions.  This crack size is obtained by equating the two solutions and solving 
for aM, thus 

   lKKs =

in conjunction with the stress intensity equations results in 
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Since for a blend-out repair kt would be greater than 1.0 and hopefully less than 1.4, aM will be 
greater than d. 

Numerical Details of Blueprint Life 
For an edge crack problem with the material crack growth rate response given by a power law 
expression, i.e. the LIFE equation can be written as 
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When integrated, this equation becomes 
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Given the growth rate constants C and n, the critical crack size af, the given stress (σ = 27 ksi) 
and the given initial crack size (ao = 0.050 inch), the crack growth life for the blueprint 
conditions is determined to be 

 LIFE = 2910 cycles 

of zero-tension loading. 

Numerical Details of Repair Life 
For the blend-out repair with the material crack growth rate response given by a power law 
expression, the LIFE equation can be expressed as: 
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When integrated, this equation becomes 
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Given the growth rate constants C (=5.84 x 10-10) and n (=4.09), the critical crack size, the given 
stress (σ = 27 ksi), and the given initial crack size (ao = 0.050 inch), one can estimate the LIFE 
for defined values of kt and d.  For example, when d and L are 0.08 inch and 1.0 inch, kt is 1.16, 
af = 0.245 inch, aM = 0.231 inch, and LIFE = 2033 cycles of zero-tension loading.  This is 
approximately 30 percent lower than that given for the blueprint life. 

Comparative Analysis of Shape Effect 
To summarize the analysis for different blend-out shapes, the LIFE equation was repetitively 
solved for several different length (2L) and depth (d) conditions for ao = 0.050 inch.  These 
results are presented in the following table in the form of life ratios and utilize the blueprint life 
obtained above.  Focusing on three crack depths (0.050, 0.100 and 0.150 inches) as 
representative, one can immediately note from the table that even for the more gradual blend-out 
case, the life is substantially reduced (to approximately 80, 65, and 50 percent, respectively) of 
the original life estimate. 

The life ratios presented in the table show the close correlation between life and the stress 
concentration factor.  These results only reinforce common sense since they show that the more 
gradual the blend-out, the closer to initial life one achieves. 

 9.6.9 



Effects Of Blend-Out Shape On Crack Growth Life Ratio 

Depth (d) inch Length (2L) 
inch 

kt Life Ratio  Condition 

0.005 2 1.01 0.977 
0.010 1.02 0.954 
0.015 1.03 0.933 
0.020 1.04 0.911 
0.025 1.05 0.891 
0.030 1.06 0.870 
0.040 1.08 0.833 
0.050 1.10 0.796 
0.060 1.12 0.762 
0.080 1.16 0.699 
0.100 1.20 0.640 
0.120 1.24 0.584 
0.150 1.30 0.503 
0.200 

 

1.40 0.366 
0.250  1.50 0.179 

Gradual 
Blend–Out 

0.010 1 1.04 0.911 
0.020 1.08 0.831 
0.050 1.20 0.638 
0.080 1.32 0.496 
0.100 

 

1.40 0.421 
0.150  1.60 0.282 

Less Gradual 
Blend–Out 
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EXAMPLE 9.6.2 Effect of Repair Initial Crack Size 

To justify removing shallow cracks with blend-out repair procedures, Example 9.6.1 is extended 
by considering the effect of repair initial crack size.  As a basis for comparison, the life ratio 
equation,  

 
)(Blueprint Life

(Repair) LifeLR =  

will again be employed, and the blueprint (as-manufacturing) LIFE is calculated using  
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with ao = 0.050 inch.  Thus, the blueprint LIFE is 2910 cycles, as calculated in Example 9.6.1. 

The purpose of this example is to show that if only part of the crack remains after blend-out there 
can be substantial life improvement over that calculated for the blueprint LIFE. 

The effect of repair initial crack size on crack growth life was calculated using  
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whereas the initial crack size ao was varied along with length (2L) and depth (d) of the blend-out.   

The results are summarized in the following table as a function of the various geometric 
parameters considered.  As expected, the table shows that initial repair crack size substantially 
affects the damage tolerant life of the blend-out.  In fact, compared to the other parameters 
considered, it dominates.  Based on this table, the importance of the variables on life is; 

ao - most significant,  
kt - significant, and  
d - least significant.   

Thus, during a blend-out repair, the objective is to remove as much of the damage as possible 
(and hopefully all) with a minimum amount of shape change. 
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Effect of Repair Initial Crack Size on Crack Growth Life Ratio 

Repair Initial 
Crack Size 

(a0) inch 

Depth  
(d) inch 

Length  
(2L) inch 

kt Life Ratio  

0.005 0.02 2.0 1.04 11.81 
0.005 0.05 2.0 1.10 10.55 
0.005 0.10 2.0 1.20 8.83 
0.005 0.15 2.0 1.30 7.49 
0.010 0.02 2.0 1.04 5.63 
0.010 0.05 2.0 1.10 5.02 
0.010 0.10 2.0 1.20 4.19 
0.010 0.15 2.0 1.30 3.52 
0.010 0.02 1.0 1.08 5.21 
0.010 0.05 1.0 1.20 4.20 
0.010 0.10 1.0 1.40 3.02 
0.010 0.15 1.0 1.60 2.28 
0.020 0.02 2.0 1.04 2.64 
0.020 0.05 2.0 1.10 2.34 
0.020 0.10. 2.0 1.20 1.94 
0.020 0.15 2.0 1.30 1.61 
0.050 0.02 2.0 1.04 0.91 
0.050 0.05 2.0 1.10 0.80 
0.050 0.10 2.0 1.20 0.64 
0.050 0.15 2.0 1.30 0.50 
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