
5.2 Variable-Amplitude Loading 
Baseline fatigue data are derived under constant-amplitude loading conditions, but aircraft 
components are subjected to variable amplitude loading.  If there were not interaction effects of 
high and low loads in the sequence, it would be relatively easy to establish a crack-growth curve 
by means of a cycle-by-cycle integration.  However, interaction effects of high and low loads 
largely complicate crack-growth under variable-amplitude cycling. 

In the following sections these interaction effects will be briefly discussed.  Crack growth-
prediction procedures that take interaction effects into account will be presented in Section 5.2.3. 

5.2.1 Retardation 
A high load occurring in a sequence of low-amplitude cycles significantly reduces the rate of 
crack-growth during the cycles applied subsequent to the overload.  This phenomenon is called 
retardation.  Figure 5.2.1 shows a baseline crack-growth curve obtained in a constant-amplitude 
test [Schijve & Broek, 1962].  In other experiments, the same constant-amplitude loading was 
interspersed with overload cycles.  After each application of the overload, the crack virtually 
stopped growing during many cycles, after which the original crack-growth behavior was 
gradually restored. 

 

 
Figure 5.2.1.  Retardation Due to Positive Overloads, and Due to Positive-Negative Overload 

Cycles [Schijve & Broek, 1962] 
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Retardation results from the plastic deformations that occur as the crack propagates.  During 
loading, the material at the crack tip is plastically deformed and a tensile plastic zone is formed.  
Upon load release, the surrounding material is elastically unloaded and a part of the plastic zone 
experiences compressive stresses.  The larger the load, the larger the zone of compressive 
stresses.  If the load is repeated in a constant amplitude sense, there is no observable direct effect 
of the residual stresses on the crack-growth behavior; in essence, the process of growth is steady 
state.  Measurements have indicated, however, that the plastic deformations occurring at the 
crack tip remain as the crack propagates so that the crack surfaces open and close at non zero 
(positive) load levels.  These observations have given rise to constant amplitude crack-growth 
models referred to as closure models [Elber, 1971] after the concept that the crack may be closed 
during part of the load cycle. 

When the load history contains a mix of constant amplitude loads and discretely applied higher 
level loads, the patterns of residual stress and plastic deformation are perturbed.  As the crack 
propagates through this perturbed zone under the constant amplitude loading cycles, it grows 
slower (the crack is retarded) than it would have if the perturbation had not occurred.  After the 
crack has propagated through the perturbed zone, the crack growth rate returns to its typical 
steady state level.   

Two basic models have been proposed to describe the phenomenon of crack retardation.  The 
first model is based on the concept of the compressive residual stress perturbation and the second 
on the concept of plastic deformation with enhanced crack wedging and more closure. 

If the tensile overload is followed by a compressive overload, the material at the crack tip may 
undergo reverse plastic deformation and this reduces the residual stresses.  Thus, a negative 
overload in whole or in part annihilates the beneficial effect of tensile overloads, as is also shown 
by curve C in Figure 5.2.1. 

Retardation depends upon the ratio between the magnitude of the overload and subsequent cycles.  
This is illustrated in Figure 5.2.2.  Sufficiently large overloads may cause total crack arrest.  
Hold periods at zero stress can partly alleviate residual stresses and thus reduce the retardation 
effect [Shih & Wei, 1974; Wei & Shih, 1974], while hold periods at load increase retardation.  
Multiple overloads significantly enhance the retardation.  This is shown in Figure 5.2.3. 
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Figure 5.2.2.  Effect of Magnitude of Overload on Retardation [Shih & Wei, 1974] 

 
Figure 5.2.3.  Retardation in Ti-6V-4Al; Effect of Hold Periods and Multiple Overloads [Wei & 

Shih, 1974] 
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5.2.1.1 Retardation Under Spectrum Loading 

An actual service load history contains high- and low- stress amplitudes and positive and negative 
“overloads” in random order.  Retardation and annihilation of retardation becomes complex, but 
qualitatively the loading produces behavior that is similar to a constant-amplitude history with 
incidental overloads.  The higher the maximum stresses in the service load history, the larger the 
retardation effect during the low-amplitude cycles.  Negative stress excursions reduce the 
retardation effect and tend to enhance crack-growth.  These effects have been documented in 
various sources [Schijve, 1972; Schijve, 1970; Wood et al., 1971; Porter, 1972; Potter, et al., 
1974; Gallagher et al., 1974; Wood, et al., 1971]; a few examples are now presented. 

When the magnitude of the higher loads are reduced (or clipped) without eliminating the cycle, 
i.e., higher loads are reset to a defined lower level, the cracking rates are observed to speed up as 
shown in Figure 5.2.4 [Schijve, 1972; Schijve, 1970].  Figure 5.2.4 describes the crack growth 
life results for a study in which a (random) flight-by-flight stress history was systematically 
modified by “clipping” the highest load excursions to the three levels shown. 

 

 
Figure 5.2.4.  Effect of Clipping of Higher Loads in Random Flight-by-Flight Loading on Crack 

Propagation In 2024-T3 Al Alloy [Schijve, 1972; Schijve, 1970] 

In Schijve [1970; 1972], it was also observed that negative stress excursions reduce the 
retardation effect and omission of the ground-air-ground (G-A-G) cycles (negative loads) in the 
tests with the highest clipping level resulted in a longer crack growth life for the same amount of 
crack growth. 

Figure 5.2.5 shows the importance of load sequence.  The crack-propagation life for random load 
cycling is shown at the top.  Ordering the sequences of the loads, low-high, low-high-low, or 
high-low increases the crack-growth life, the more so for larger block sizes.  Hence, ordering 
should only be permitted if the block size is small.  Low-high ordering gives more conservative 
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results than high-low ordering.  In the latter case, the retardation effect caused by the highest 
load is effective during all subsequent cycles. 

 
Figure 5.2.5.  Effect of Block Programming and Block Size On Crack Growth Life All Histories 

Have Same Cycle Content; Alloy: 2024-T3 Aluminum [Shih & Wei, 1974] 
 

5.2.1.2 Retardation Models 

Some mathematical models have been developed to account for retardation in crack-growth-
integration procedures.  All models are based on simple assumptions, but within certain 
limitations and when used with experience, each model will produce results that can be used with 
reasonable confidence.  The two yield zone models by Wheeler [1972] and by Willenborg, et al., 
[1971], and a crack-closure model by Bell & Creager [1975] will be briefly discussed.  Detailed 
information and applications of closure models can be found in Bell & Creager [1975], Rice & 
Paris [1976], Chang & Hudson [1981], and Wei & Stephens [1976]. 

Wheeler Model 
Wheeler defines a crack-growth reduction factor, Cp: 
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where f(∆K) is the usual crack-growth function, and (da/dN) is the retarded crack-growth rate.  
The retardation factor, Cp is given as 
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where (see Figure 5.2.6): 
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rpi – current plastic zone size in the ith cycle under consideration 
ai – current crack size 
rpoL – plastic size generated by a previous higher load excursion 
aoL – crack size at which the higher load excursion occurred 
m – empirical constant  

 
Figure 5.2.6.  Yield Zone Due to Overload (rpoL), Current Crack Size (ai), and Current Yield 

Zone (rpi) 

There is retardation as long as the current plastic zone (rpi) is contained within a previously 
generated plastic zone (rpoL) ; this is the fundamental assumption of yield zone models. 

Some examples of crack-growth predictions made by means of the Wheeler model are shown in 
Figure 5.2.7.  Selection of the proper value for the exponent m will yield adequate crack-growth 
predictions.  In fact, one of the earlier advantages of the Wheeler model was that exponent m 
could be tailored to allow for reasonably accurate life predictions of spectrum test results.  
Through the course of time, it has become recognized, however, that the exponent m was 
dependent on material, crack size, and stress-intensity factor level as well as spectrum.  The 
reader is cautioned against using the Wheeler model for service life predictions based on limited 
amounts of supporting test data and more specifically against estimating the service life of 
structures with spectra radically different from those for which the exponent m was derived.  
Estimates made without the supporting data required to tailor the exponent m can lead to 
inaccurate and unconservative results. 
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Figure 5.2.7.  Crack Growth Predictions by Wheeler Model Using Different Retardation 

Exponents [Wood, et al. 1971] 

Willenborg Model 
The Willenborg model also relates the magnitude and extent of the retardation factor to the 
overload plastic zone.  The extent of the retardation is handled exactly the same as that of the 
Wheeler model.  The magnitude of the retardation factor is established through the use of an 
effective stress-intensity factor that senses the differences in compressive residual stress state 
caused by differences in load levels.  The effective stress-intensity factor (Keff

i) is equal to the 
typical remote stress-intensity factor (Ki) for the ith cycle minus the residual stress-intensity 
factor (KR): 
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where in the original formulation [Willenborg, et al., 1971; Gallagher, 1974; Gallagher & 
Hughes, 1974; Wood, 1974] 
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in which (see Figure 5.2.6): 

ai  – current crack size 

aoL  –- crack size at the occurrence of the overload 

rpoL  – yield zone produced by the overload 

KoL
max  – maximum stress intensity of the overload 

Kmax,i  – maximum stress intensity for the current cycle. 
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The equations show that retardation will occur until the crack has generated a plastic zone size 
that reaches the boundary of the overload yield zone.  At that time, ai-aoL= rpoL and the reduction 
becomes zero. 

Equation 5.2.3 indicates that the complete stress-intensity factor cycle, and therefore, its 
maximum and minimum levels (Kmax, i and Kmin, i), are reduced by the same amount (KR).  Thus, 
the retardation effect is sensed by the change in the effective stress ratio calculated by 
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since the range in stress-intensity factor is unchanged by the uniform reduction.  Thus, for the ith 
load cycle, the crack growth increment (∆ai) is: 
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For many of the early calculations with the Willenborg model, it was assumed that Reff was never 
less than zero and that  when Reff

iKK max,=∆ eff was calculated to be less than zero.  Recent 
evidence, however, supports the calculations of Reff as given by Equation 5.2.5 and the use of a 
negative stress ratio cut-off in the crack growth rate calculation (Equation 5.2.6) for more 
accurate modeling of crack growth behavior. 

Another problem that was identified with the original Willenborg model was that it was always 
assigned the same level of residual stress effect independent of the type of loading.  In particular, 
it can be noted (through the use of Equation 5.2.3 and 5.2.4) that the model predicts that 

, and therefore crack arrest, immediately after overload if .  That is, if 
the overload is twice as large as (or larger than) the following loads, the crack arrests.  To 
account for the observations of continuing crack propagation after overloads larger than a factor 
of two or more, Gallagher & Hughes [1974] introduced an empirical (spectra/material) constant 
into the calculations.  Specifically, they suggested that 
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where φ is given by 
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There are two empirical constants in Equation 5.2.7a: Kmax, th is the threshold stress-intensity 
factor level associated with zero fatigue crack growth rates (see Section 5.1.2), and S 

oL is the 
overload (shut-off) ratio required to cause crack arrest for the given material.  The type of 
underload/overload cycle, as well as the frequency of overload cycle occurrence, affects this 
ratio.  Results of some life predictions made using what has become to be called the 
“Generalized” Willenborg model are presented in Figure 5.2.8 [Engle & Rudd, 1974].  
Compressive stress levels were ignored in this analysis. 
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Figure 5.2.8.  Predictions of Crack Growth Lives with the Generalized Willenborg Model 

Compared to Test Data [Engle & Rudd, 1974] 

Closure Models 
One of the earliest crack-closure models developed for aircraft structural applications is 
attributed to Bell & Creager [1975].  The closure model makes use of a crack-growth-rate 
equation based on an effective stress-intensity range ∆Keff.  The effective stress intensity is the 
difference between the applied stress intensity and the stress intensity for crack closure.  Some 
examples of predictions made with the model are presented in Figure 5.2.9.  The final equations 
contain many experimental constants, which reduces the versatility of the model and make it 
difficult to apply.  Recent work by Dill & Saff [1977] shows that the closure model can be 
simplified to the point of practicality while retaining a high level of accuracy in life prediction. 
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Figure 5.2.9.  Predictions by Crack Growth Closure Model as Compared with Data Resulting 

From Constant-Amplitude Tests with Overload Cycles [Bell & Creager, 1975] 

Crack-growth calculations are the most useful for comparative studies, where variations of only a 
few parameters are considered (i.e., trade-off studies to determine design details, design stress 
levels, material selection, etc.).  The predictions must be verified by experiments.  (See Analysis 
Substantiation Tests in Section 7.3).  Example calculations of crack-growth curves will be given 
in Section 5.5. 

Other factors contributing to uncertainties in crack-growth predictions are: 

• Scatter in baseline da/dN data, 

• Unknowns in the effects of service environment, 

• Necessary assumptions on flaw shape development, 

• Deficiencies in K calculation, 

• Assumptions on interaction of cracks, 

• Assumptions on service stress history. 

In view of these additional shortcomings of crack-growth predictions, the shortcomings of a 
retardation model become less pronounced; therefore, no particular retardation model has 
preference over the others.  From a practical point of view, the Generalized Willenborg model is 
easier to use since it contains a minimum number of empirical constants. 
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5.2.2 Integration Routines 
The determination of a crack growth increment due to any particular stress history depends upon 
an integration of the growth rate relation such as given by equations 5.1.2 - 5.1.4.  Four general 
methods are available for this purpose. 

The first approach is based on extensive spectrum crack growth data.  Tests that incorporate the 
important stress levels, part geometry, crack shape details and loading sequences are run to 
determine the effect of the particular variables of interest on the component life. 

A second approach, and one used extensively, is the cycle-by-cycle crack growth analysis where 
crack rates are integrated over the crack length of interest as a function of stress and crack length 
[Gallagher, 1976; Brussat, 1971]. 

A third approach is based on the statistical stress-parameter-characterization.  The actual service 
stress histories are replaced with equivalent constant amplitude stress histories for the analytical 
prediction of component life [Smith, et al., 1968]. 

A fourth approach, recently developed, utilizes a crack-incrementation scheme to analytically 
generate “mini-block” crack growth rate behavior prior to predicting life.  It combines some 
features of the first three methods [Gallagher, 1976; Brussat, 1971; Gallagher & Stalwaker, 1975]. 

The application of the second through fourth approaches requires methods for integrating the 
crack growth rate relations requires the knowledge of the following items: 

• An initial flaw distribution 

• The aircraft loading spectrum 

• Constant amplitude crack growth rate material properties 

• Crack tip stress-intensity factor analysis 

• A damage integrator model relating crack growth to applied stress and which accounts 
for load-history interactions 

• The criteria which establishes the life-limiting end point of the calculation 

 

These items are described in detail in Section 1.5 of this handbook.  The basic damage 
integrating equation is also presented as equation 1.5.1 but is repeated here: 
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where ∆aj is the growth increment associated with the jth time increment, ao is the initial crack 
length, acr is the critical crack length and tf is the life of the structure.  The determination of tf is 
the objective of this equation. 

Of the integration methods described above, the second and third are most frequently used.  The 
generation of the data required for the first method is very expensive and is only recommended 
for extremely critical parts. 

5.2.11 



Cycle-by-cycle method 
The second method, the cycle-by-cycle integration method, uses a type of integrating relation 
whereby the effect of each cycle is considered separately.  This is generally the least efficient 
method, but if the spectrum under consideration cannot be considered as statistically repetitive, it 
may be the most accurate of the analytical methods.  This method is covered in detail in 
subsection 5.2.3. 

Statistical Stress-Parameter Characterization 
The third method, using a statistical characterization of a crack growth parameter is based on the 
similarity of certain variable amplitude crack growth behavior to the constant amplitude function 
relationship: 
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where (da/dF) is the flight-by-flight crack growth behavior and K  is a stress-intensity factor 
parameter that is derived using the product of a statistically characterizing stress parameter σ( ) 
and the stress-intensity factor coefficient (K/σ), i.e., 

)/( σσ KK ⋅=  (5.2.9)

The statistically characterizing parameters that have been employed in the past to some success 
are derived using a root mean square (RMS) or similar type analysis of the stress range or stress 
maximum.  The crack growth behavior of both fighter and transport aircraft stress histories have 
been described using various forms of equation 5.2.8. 

One might imply from equations 5.2.8 and 5.2.9 that the use of a single stress characterizing 
parameter for stress histories would allow one to utilize equivalent constant amplitude histories 
to derive the same crack growth rate behavior.  Unfortunately, relating constant amplitude 
behavior to variable amplitude behavior has not been that successful. 

The damage integration Equation (1.5.1R) is now expressed for the flight as 
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where Nf is the number of flights corresponding to crack length ak, and ∆aj is computed from 
Equation 5.2.8 evaluated for the given conditions.  The parameters C and p of Equation 5.2.8 are 
determined by a least squares curve fit to previously determined data.  The value that comes 
from employing the third method comes from the fact that a somewhat limited variable 
amplitude data base might be extended to cover other crack lengths, structural geometry, or 
stress level differences. 

Crack-Incrementation Scheme 
The fourth approach provides an analytical extension of the cycle-by-cycle analysis to predict 
flight-by-flight crack growth rates.  In essence, this approach combined some of the best features 
of the other three methods.  The basic element in this analysis is what is referred to as a mini-
block which is taken to be a flight (includes takeoff, landing and all intermediate stress events) or 
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a group of flights.  The approach hinges on the identification of the statistically repeating stress 
group that approximates the loading and sequence effects for the complete spectrum. 

The basic damage integration equation can be written in the mini-block form to compute the 
crack increment (∆a) due to application of NG flights: 
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where there are Nj stress cycles in the jth flight.  The most direct method for applying the 
equation is called the simple crack-incrementation-mini-block approach.  Successive crack 
increments are obtained at successively larger initial-crack-lengths.  Figure 5.2.10 illustrates this 
method.  The resulting values of ∆a/∆F and the corresponding Kmax values are fit with a curve of 
the desired type, usually similar to Equation 5.2.8, which can now be used to compute life. 

 
Figure 5.2.10.  Simple Crack-Incrementation Scheme Used to Determine Crack Growth Rate 

Behavior [Gallagher, 1976] 

An alternate method, called the statistical crack-incrementation-mini-block approach, is 
illustrated in Figure 5.2.11.  This method allows evaluation of the effect of mini-block group-to-
group variation in the crack growth rate behavior.  A number of different mini-block groups are 
used at each initial crack length.  A curve can be fit through the mean ∆a/∆F vs. maxK  values and 
the variation of ∆a/∆F at each Kmax can be observed.  Confidence limits can be determined for 
each set of data. 
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Figure 5.2.11.  Statistical Crack-Incrementation Scheme Used to Determine Spectrum Induced 

Variations in Crack Growth-Rate Behavior [Gallagher, 1976] 

The fourth approach provides a more efficient integration scheme than the cycle-by-cycle 
analysis.  However, its use is determined by the type of stress history that has to be integrated. 

Summary 
In summary, there are a number of integration schemes available.  These schemes all employ 
modeling approaches based on either limited or extensive variable amplitude databases so that 
the analyst might properly account for loading and sequence effects in the most direct and most 
accurate manner. 

5.2.3 Cycle-by-Cycle Analysis 
Several computer programs are available for general uses that include one or more of the 
retardation models in a crack-growth-integration scheme.  These are discussed in Section 1.7. 
The user has the option of using any of the retardation models discussed in the previous section.  
Most airframe companies, however, have their own in-house computer program for performing 
variable-amplitude fatigue life calculations. 

In general, the crack-growth-damage-integration procedure consists of the following steps, 
schematically outlined in Figure 5.2.12. 
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Figure 5.2.12.  Steps Required for Crack Growth Integration  

Step 1. The initial crack size follows from the damage tolerance assumptions as a1.  The stress 
range in the first cycle is ∆σ1.  Then determine 111 aK πσ∆β∆ = by using the 
appropriate β for the given structural geometry and crack geometry.  Computer 
programs generally have a library of stress-intensity factors or schemes for tabular data 
input for determining the appropriate β. 

Step 2.  Determine (da/dN)1, at ∆K1 from the da/dN -∆K baseline information, taking into 
account the appropriate R value.  The da/dN - ∆K baseline information may use one of 
the crack growth equations discussed in Section 5.1.2.  The computer program may 
contain options for any of these equations, or it may use data in tabular form and 
interpolate between data points.  The crack extension ∆a1 in cycle 1 is 
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  The new crack size will be a2 = a1 + ∆a1 
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Step 3.  The extent of the yield zone in Cycle 1 is determined as 
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  where a =  1aoL
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Step 4.  The crack size is now a2.  The stress range in the next cycle is ∆σ2.  Calculate ∆K with 

   222 aK πσ∆β=∆ . 

Step 5.  Calculate the extent of the yield zone 
 Y22 = a2 + rp2 . 

Step 6.  If Y22 < Y2: 

  When using the Wheeler model, calculate Cp according to Equation 5.2.2. 

  When using the Generalized Willenborg model, calculate or and R eff
maxK  eff

minK eff 
according to Equations 5.2.3, and 5.2.5. 

  Go to Step 9, skipping steps 7 and 8. 

Step 7.  If Y22 > Y2, determine (da/dN)2 from ∆K2.  Determine the new crack size a3 
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Step 8.  Replace Y2 by Y22 , which is now called Y2.  Replace aoL =a1 with aoL =a2.  Go to Step 
10, skipping Step 9. 

Step 9.  When using the Wheeler model, determine the amount of crack growth on the basis of 
∆K2 from the da/dN - ∆K data.  Find the new crack size from 
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When using the Generalized Willenborg model, determine the amount of crack growth 
using the ∆K and Reff value determine in Step 6 from the da/dN - ∆K data.  Determine 
the new crack size as 
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Step 10. Repeat Steps 4 through 9 for every following cycle, while for the ith cycle replacing a2 
by ai and a3 by ai+1. 
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This routine of cycle-by-cycle integration is not always necessary.  The integration is faster if the 
crack size is increased stepwise in the following way. 

• At a certain crack size, the available information is ai, aoL, Y2. 

• Calculate ∆ai for the ith cycle in the same way as in Steps 4 through 9. 

• Calculate ∆aj+1, . . . , ∆aj, . . . , ∆an for the following cycles but let the current crack size 
remain ai constant.  This eliminates recalculation of β every cycle. 

• Calculate Y2k for every cycle.  If Y2k > Y2, then replace Y2 by Y2k and call it Y2.  Then 
replace aoL by ai and call it aoL. 

• Sum the crack-growth increments to give: 
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• Continue increasing j until ∆a exceeds a previously determined size or until j = n and the 
cycles are exhausted.  Then increment the crack size by   

 a= ai + ∆a, 

and repeat the procedure. 
 

A reasonable size for the crack-growth increment is ∆a = 1/20 ai; this choice of increment 
typically keeps the change in K small.  It can also be based on the extent of the yield zone, e.g., 
∆a = 1/10 (Y2 - ai).  The advantage of the incremental crack-growth procedure is especially 
obvious if series of constant-amplitude cycles occur.  Since the crack size (ai) is fixed, the stress 
intensity does not change.  Hence, each cycle produces the same amount of growth.  This means 
that all n constant-amplitude cycles can be treated as one cycle to give 
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The integration scheme is a matter of individual judgment, but may be dictated by available 
computer facilities. 
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