
3.3 Proof Test Determinations 
Tiffany and Masters [1965] first suggested that the conventional structural proof test could be 
used to inspect for crack damage that would eventually lead to catastrophic failure.  These 
techniques were first applied to rocket motor cases and tankage as a result of numerous missile 
launch failure at Cape Canaveral.  Air Force acceptance of this proof test philosophy has been 
stimulated by the inability of alternate non-destructive inspection tools to reliably detect cracks 
of near-critical size.  The Air Force in the recent past has employed the proof test as a means of 
determining the maximum possible initial flaw that could exist in the structural subsystems 
identified in Table 3.3.1.  Note that almost all of the examples cited represent the application of 
the proof stress techniques as an In-service Inspection.  Buntin [1971], Cowie [1975], Horsley, et 
al. [1976], Gunderson [1974] and Albrectsen & Aitken-Case [1976] document the Table 3.3.1 and 
other Air Force uses of the crack-inspection proof test. White, et al. [1979] documents the recent 
Navy proof test of an A-7 arresting hook; this proof test is periodically repeated to ensure the 
continuing structural integrity of the component. 

The proof test concept for all applications has been to size or eliminate the life degrading damage 
so that the structure would maintain its required level of structural integrity throughout a defined 
period of usage. However, due to substantially different technical requirements, the proof testing 
techniques employed in each case were different. The technical requirements that establish the 
type of tests conducted have been structural geometry, material properties, type of crack damage 
present in the structure, as well as the crack growth mechanism. 

Table 3.3.1.  Proof Testing of Aircraft Structures 

System Subsystem Damage Special Techniques 
F-111 Lower surface of 

inner wings and 
pivot fittings 

Potential forging defects 
propagated due to fatigue in 
D6AC steel 

Upwing bending at -40° 
F after every 1,000 hours 
of flight 

B-1A F-101 
(Development) 
engine combustor 
case 

Pores and inclusion stringers in 
circumferential butt welds in 
Inconel 901 alloy 

Internal pressure to 200% 
operating pressure 

B-52D Center and inner 
wing structure 

Fatigue and stress corrosion 
cracks nucleated during southeast 
Asia service in 7075-T6 and 
7079-T6 aluminum alloy 
structure 

Down and up-wing 
bending at ambient 
temperature 

C-141 Main Landing gear 
(cylinder) 

Hydrogen entrapped during 
refurbishment 

500 hours of continuous 
static loading to initiate 
and propagate cracks to 
failure 

A-7 Carrier arresting 
hook (Navy) 

Fatigue cracking initiated during 
service 

Repeat periodically 
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3.3.1 Description of the Proof Test Method 
Tiffany and Masters [1965] utilized the proof test as a means of guaranteeing that a potentially 
cracked structure would not fail during a defined period of operation.  This guarantee results 
from the fact that all the cracks remaining in a proof-loaded structure must be smaller than those 
cracks which would have failed the structure during the proof test.  Since the proof test loadings 
are typically larger than the maximum operating conditions, the post proof-tested structure’s 
cracks are also expected to be substantially smaller than the cracks which would cause failure 
under operating loads. 

Figure 3.3.1 schematically illustrates a stress-crack length diagram that defined the levels of 
loading (proof stress and operational maximum stress) and the corresponding crack lengths 
associated with structural failure by fracture.  It can be noted from Figure 3.3.1 that all cracks 
larger than ai will cause the structure to fail during the proof test loading, thus guaranteeing a 
“minimum” safe crack growth interval between ai and the crack size (aop) at which the operating 
conditions will cause failure.  The interval established is the minimum safe interval because the 
structure may initially have cracks that are substantially smaller than the guaranteed initial size (ai). 

 
 

Figure 3.3.1.  Fracture Critical Curve Defining Relationship Between Stress and Crack Length 
Associated with Fracture 

Tiffany and Masters [1965] designed the proof test conditions so that all cracks initially present 
in the structure and of sufficient size that they could grow to failure during the planned service 
operating period would fail the structure during the proof test.  If the operating conditions and 
the crack growth mechanisms are known, then a crack growth life calculation can be performed 
to establish the minimum safe crack growth interval during which failure will not occur during 
service.  The minimum safe crack growth interval extends from the largest allowable initial crack 
size (a*

i) and the crack size (aop). 

Figure 3.3.2 describes the interrelationship between the crack growth life and residual strength 
behavior of a structure and the stress-crack size diagram.  As indicated in Figure 3.3.2 (right-hand 
side), the life limit associated with the crack growth process and the decay of the residual strength 
capability is lower than the service life requirement.  An increase in the proof stress if required, 
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therefore, to decrease the corresponding crack size (ai) to the maximum allowable crack size (a*
i) 

and thus ensure a safe period of operation.  Note that the stress-crack size diagram indicates that 
all cracks greater than ai , present at the time of the proof test, will cause structure failure.  Thus, 
the proof test ensures that when the structure enters service, its initial cracks will be no larger 
than the size associated with the proof test conditions. 
 

 
Figure 3.3.2.  Schematic Illustrating the Relationship Between the Proof Test Diagram, the 

Residual Strength Capability and Crack Growth Life Interval 

The levels of proof test stress and the material’s fracture toughness combine to establish the 
maximum initial crack size guaranteed by the proof test.  Because material and stress variations 
will exist throughout any proof loaded structure, the designer of a proof test must be aware of 
several important material variations which could significantly affect the post-proof test crack 
size distribution.  These important material variations are caused by changes in temperature, 
loading rate, thickness, and yield strength.  Figure 3.3.3 schematically describes how fracture 
toughness varies as a function of these parameters.  Note that temperature and loading rate can 
affect some materials (some steels and titanium alloys are particularly susceptible) while other 
materials are unaffected.  Aluminum alloys and many nickel-bases alloys exhibit almost no 
variation in fracture toughness as a function of temperature and strain rate). 
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Figure 3.3.3.  Fracture Toughness Varies as a Function of (a) Thickness, (b) Yield Strength, (c) 

Temperature, and (d) Loading Rate 

Figure 3.3.4 provides an example of how a material’s response to external stimuli can be utilized 
to increase the minimum safe crack growth interval.  In Figure 3.3.4, a material’s known response 
to temperature is utilized to select a low temperature condition for conducting the proof test.  The 
lower fracture toughness exhibited at the low temperature is shown to extend the minimum safe 
crack growth interval substantially beyond what would have been expected for the same proof 
stress at the operating temperature conditions. 

 
 

Figure 3.3.4.  Using a Material’s Low Temperature Fracture Sensitivity to Decrease Initial 
Crack Size and thus Increase the Minimum Safe Crack Growth Interval for a Given Proof 

Stressing Condition 
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As stated by JSSG-2006 A.3.12.1, “the minimum assumed initial flaw size shall be the calculated 
critical size at the proof test stress level and temperature using procuring activity approved upper-
bound of the material fracture toughness data.”  The concept of using an approved upper-bound 
for the fracture toughness ensures a worst case assumption for the maximum allowable initial 
crack size (see Figure 3.3.5) and the minimum safe crack growth interval (see Figure 3.3.6).  
Figure 3.3.6 summarizes the JSSG-2006 requirements for establishing the minimum safe crack 
growth interval for the NDE proof test conditions. 

 
Figure 3.3.5.  Influence of Fracture Toughness Variation on the Maximum Allowable Crack Size 

 
Figure 3.3.6.  Description of Procedure Used to Establish Initial Crack Size and the Minimum 

Safe Crack Growth Interval According to JSSG-2006, A.3.12.1 

There are no design allowables for fracture toughness of aerospace materials.  Figure 3.3.7 presents 
a portion of MIL-HDBK-5G data that define typical plane strain fracture toughness for aluminum 
alloys.  The fracture toughness values presented are averages, coefficients of variation and the 
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minimum and maximum values obtained from the test data collected for the individual alloys and 
heat temperature conditions shown.  The supporting text in MIL-HDBK-5G notes that the fracture 
toughness values given do not have the statistical reliability of the typical mechanical properties 
(yield strength, elastic modulus, etc.) that are usually present in MIL-HDBK-5 properties.  The 
lack of a definition of the fracture toughness upper-bound required by JSSG-2006 would be 
overcome if the upper-bound is estimated by a statistical definition that is agreed to by the 
procuring agency.  An example of such a bound might be a tolerance limit on the distribution of 
fracture toughness values. 

 

Figure 3.3.7.  Table of Fracture Toughness Data from MIL-HDBK-5G 

3.3.2 Examples 
Two examples are now presented to illustrate how the proof test might be used.  The first example 
describes how a proof stress condition might be chosen to find specific crack sizes.  The second 
example describes a typical situation whereby the proof test must be designed to guarantee a 
service life interval. 
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EXAMPLE 3.3.1 Proof Test Stress-Crack Length Relationships 

For the radially-through-thickness cracked structure illustrated here, answer the following 
questions: 

(a)  What proof stress (σp) is required at room temperature to guarantee that the maximum crack 
size is less than 0.05 inches? Also, define the ratio of proof to operating stress conditions (α 
= σp/σop). 

(b)  For a proof test conducted at -40°F, define the proof stress and proof stress ratio associated 
with finding a crack with a length 0.05 in. 

(c)  If the proof test ratio is 1.5, what is the minimum flaw size that will be detected at room 
temperature? 

 

r

a
.

.

+32460

87340

σop = 35 ksi 

Material Properties 
 
σYS = 70 ksi 
KIC = 40 ksi √in at 75° 
KIC = 35 ksi √in at -40° 
 
STRESS INTENSITY FACTOR SOLUTION 
 
K = σ√πa F (a) 
where 

F (a) =  + 0.6762 

 

 

 

 

 

 

 

 

 

 

 

 
σop = 35 ksi 

 

SOLUTION: 

The equation that governs the solution to all three questions is the Irwin fracture criterion, i.e., 
  K = KIC 
where 
  ( )r/aFaK ⋅= πσ  
with F(a/r) and the material properties defined above. 

To address the questions parts a and b, the equations are solved for the proof stress σp, i.e. 

  
( )raFa

KIC
p /⋅
=

π
σ  
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for the given KIC conditions at temperature and for a 0.05 inch long crack, i.e. a in this equation 
is 0.05 inch.  So, for room temperature, the proof stress is 

  
( ) ( )

ksi.
..p 143
342050

40
=

⋅
=

π
σ  

and for -40° F the proof stress is 

  
( ) ( )

ksi.
..p 737
342050

35
=

⋅
=

π
σ  

In both cases, the proof stress is well below the yield strength; however, it might be noted that 
localized yielding at stress concentrations could occur at these levels.  The proof stress ratios (α) 
are 1.23 and 1.08 for the room temperature and -40°F proof test conditions, respectively.  To 
address the third part of the question, it is necessary to solve the equations for crack length (a), i.e. 

  ( )
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Because this equation involves crack length in the function F in a complicated fashion, the 
equation is solved iteratively for the given material and stress conditions, i.e. KIC = 40 ksi √in 
and σp = 1.50 x (35) = 52.5 ksi.  Thus, 
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A series of several trials are shown in the following table, where a match of the right and left side 
of the equation is achieved when a ≅ 0.0245 inches.  Thus, 0.049 inch long cracks can be found 
for a proof test ratio of 1.50. 

Trial And Error Solution  
a (left-hand side) a/r F(a/r) a (right-hand side)

0.020 0.08 2.835 0.0230 
0.025 0.10 2.733 0.0247 
0.030 0.12 2.641 0.0265 
0.0255 0.102 2.723 0.0249 
0.0245 0.098 2.743 0.0246 

 
In the above solutions, it is seen that in some cases the proof stress is sufficiently large such that 
yielding can be expected at the edge of the hole and other stress concentration sites.  The reader 
is cautioned that linear elastic fracture mechanics (LEFM) techniques such as applied in these 
equations should not be utilized when extensive local yielding occurs except to obtain first-order 
estimates of the crack length.  From a proof test standpoint, the LEFM estimates of the minimum 
crack length will be actually larger than those screened by loading the structure to the proof 
condition, assuming load control conditions, and thus conservative. 
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EXAMPLE 3.3.2 Proof Test Conditions to Guarantee Life 
The pressure vessel shown here has a semicircular surface crack of unknown size located in the 
longitudinal direction.  This vessel is subjected to an on-off pressure loading condition of the 
type illustrated below and is made of a structural steel with the mechanical properties shown. 

 
Pressure Vessel Structure with Semicircular Surface Crack 

For economic purposes, it has been decided that the structure will only be inspected yearly and 
the inspection procedure has been chosen to be a proof test.  You have been asked to select the 
proof pressure level that will guarantee that this vessel will not fail during the interval between 
proof test inspections subject to the crack/loading/material property assumptions. 

 

 

Pressure/Time Loading Cycle 
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Material Properties for Steel Pressure Vessel 

SOLUTION: 

It is first necessary to calculate the gross stress in the section of the structure where the crack is 
located.  From any standard strength of materials text, it is determined that for a pressure (p) of 
2,000 psi, the maximum operating stress (σ) for the vessel with an outside diameter of 40 inch 
and a thickness (B) of 0.4 inch is given by 

 ( )( )
( ) psi

B
pD 000,100

4.02
402000

2max ===σ  

or 100 ksi, and the range of stress is 

 ksi. max 75750 == σσ∆  

For the semicircular crack partly through the vessel wall, the stress-intensity factor is given by 

 aK πσ
π






=

212.1  
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neglecting the back surface correction factor. Assume for illustrative purposes that the equation 
can be considered a reasonable estimate of the true stress-intensity factor at all depths through 
the thickness.  As a first step, determine if the structure will leak before it breaks by calculating 
the stress-intensity factor for the condition where the crack depth is equal to the thickness.  Thus, 
with σ = 100 ksi and a = 0.4 in., 

 
( ) ( )

inksi

K

9.79

4.0100212.1

=







= π
π  

which is less than KIC = 90 ksi√in and thus the vessel might leak before fracturing.  Consider, 
however, the potential cracking situation that occurs if the semicircular crack penetrates the wall 
and immediately transitions to a through thickness crack as shown.  An analysis indicates that K≅ 
112 ksi√in, which is greater than KIC.  Thus, given this situation, the vessel will fail 
catastrophically. 

 
Change in Crack Geometry to Through-Thickness Crack After the  

Semicircular Crack Grows to the Inside Wall 

To establish the crack size associated with the proof test, one must conduct a life analysis which 
works from the final crack size (a = 0.4 inch) backwards until the one-year life interval (a two-
year life interval with the factor of two life margin) is guaranteed.  The life analysis that is 
conducted illustrates an incremental crack length method that uses the iterative equation 

 ( )days

dt
da

aLife
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= ∑
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where the increments of crack length (∆ai) and crack growth rate values (da/dti) are chosen to 
be compatible. 

On the basis of the given material data, one must assume that both a fatigue and a stress-corrosion 
cracking mechanism are active (see Section 5 for discussion on these mechanisms).  The fatigue 
crack growth rate behavior can be described using the power law 

 ( )cycleinKx
dN
da /103.3 959.210∆= −  
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On the basis of the material data, this equation is restricted to the range 10 < ∆K < 90 ksi in , 
and to the stress ratio (R) of 0.25, which is compatible with the given loading cycle.  

The stress-corrosion cracking rate data can be described with the power law: 

 ( )dayinKx
dt
da

cor /1024.9 798.5
max

15−=  

which is valid for sustained loading conditions when Kmax is between the threshold of stress 
corrosion cracking (KIscc = 65 ksi √in) and the fracture toughness level (KIC = 90 ksi √in). 

As a first approximation of the effect of combined stress corrosion action and fatigue crack 
growth, the linear summation hypothesis of Wei-Landes is suggested (see Section 5): 

 fatcortotal dt
da

dt
da

dt
da

+=  

where the time based fatigue crack growth rate is obtained from 

 
dN
daf

dt
da

fat ⋅=  

whereby the cycle-dependent component from the power law equation is multiplied by the cyclic 
frequency (f).  It is also to be noted that the stress-corrosion cracking rate contribution for a day 
in service is one-half that established by the da/dt equation since the vessel is only loaded to the 
maximum pressure only half the time. 
There are a number of ways that the Life equation can be used to establish the crack length-life 
relationship.  The method for this example will be to choose equal increments of Kmax between 
the crack size at failure and the other crack lengths established to obtain the ∆ai values.  The next 
table describes the relationships between the maximum stress-intensity factor and the crack 
length, the crack length increment, the average values of the maximum stress-intensity factor 
( maxK ) and stress-intensity factor range ( K∆ ). 

Crack Interval Table 

Kmax (ksi √in) 55 60 65 70 75 80 
a (inch) 0.189 0.225 0.264 0.307 0.352 0.400 
∆a (inch) 0.036 0.039 0.043 0.045 0.048 

).(max
*

inksiK  57.5 62.5 67.5 72.5 77.5 

).inksi(K
*

∆  43.1 46.9 50.6 54.4 58.1 
*Average values for the interval 

 
The calculations of crack length a in this table are directly related to Kmax through the equation 
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which when solved for a typical value of Kmax, say 55 ksi √in, the crack length becomes 
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The difference in crack lengths (∆a) comes from subtracting the two corresponding crack 
lengths.  The values of K max are computed by averaging the two corresponding Kmax values, e.g. 
62.5 ksi √in  = 0.5 (60 + 65). The values of K∆  are computed from the relationship ∆K = (1-R) 
Kmax, where R is the stress ratio (0.75). 

The next table presents the fatigue crack growth rate contribution and the following table 
presents the stress corrosion cracking contribution.  

Fatigue Crack Growth Rate Contribution 

∆Κ  (ksi √in)  
dN
da  (in/cycle) 

dN
dax

day
cycles

dt
da

fat

5
=  

43.1 2.26 x 10 -5 1.13 x 10 –4 
46.9 2.91 x 10 -5 1.46 x 10 –4 
50.6 3.64 x 10 -5 1.82 x 10 –4 
54.4 4.51 x 10 -5 2.25 x 10 -4 
58.1 5.48 x 10 -5 2.74 x 10 -4 

Stress-Corrosion Cracking Rate Contribution. 

)in (ksi maxΚ  (in/day) 
dt
da  (in/day) 

cordt
da  

57.5 0* 0 
62.5 0* 0 
67.5 3.73 x 10 -4 1.86 x 10 -4 
72.5 5.65 x 10 -4 2.82 x 10 -4 
77.5 8.3 x 10 -4 4.16 x 10 -4 

* maxΚ  is below KIscc and therefore no growth occurs 
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In the Fatigue Crack Growth Rate Table, the K∆  values are taken from the Crack Interval Table 
and cover each of the consecutive intervals of crack length.  From the da/dN equation the crack 
growth fatigue rate for a stress-intensity range of 43.1 is 

 
cycle

inx.).(x.
dN
da . 5959210 102621431033 −− ==  

The calculations of 
fatdt

da  follow directly from multiplying the fatigue crack growth rates by the 

frequency of load application (5 cycles/day).  

In the Stress-Corrosion Cracking Rate Table, the maxΚ  values are taken from Crack Interval 
Table and cover each of the consecutive intervals of crack length.  From the da/dt equation, the 
sustained load stress corrosion cracking growth rate is 

 day/inx.).(x.
dN
da . 4798515 1073356710249 −− ==  

The calculations of the corrosion contribution to the total da/dt equation are also given in the 
table.  These come directly from the fact that the structure is only loaded into the range where 

stress corrosion cracking occurs for one-half of the time (on-off cycling) so the 
cordt

da  numbers 

are one-half those given in the middle column. 

The total contribution to cracking behavior is calculated from the total da/dt equation, and the 
individual crack increments in the Life equation are used to establish the time that it takes to 
grow the crack through the successive intervals.  The appropriate calculations are reported in the 
next table. 

Estimating the Time To Growth Through Successive Intervals. 

∆a  
(inch) 

totaldt
da  (in/day) 

∆t  
(days) 

A 
 (inch) 

t = Σ∆t  
(days) 

0.036 1.13 x 10 -4 318.6 0.189 861.1 
0.039 1.46 x 10 -4 267.8 0.225 542.5 
0.042 3.68 x 10 -4 114.9 0.264 274.7 
0.045 5.07 x 10 -4 89.5 0.307 159.8 
0.048 6.9 x 10 -4 70.3 0.352 70.3 

   0.400 0 
 

The crack length increment (∆a) and the crack length (a) values given in this table come from 

the Crack Interval Table.  The total crack growth rate 








totaldt
da

  values come from the total da/dt 
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equation, where the individual contributions come from the Fatigue Crack Growth Rate and 
Stress-Corrosion Cracking Rate Tables, e.g. 

 444 108221025210075 −−− +== x.x.
day
inx.

dt
da

total

 

for ∆a = 0.045 inch and a between 0.307 and 0.352 inch.  The increment of time required to 
propagate the crack through this interval is obtained from 

 days
x.

in.

dt
da

at
day
in

total

89
10075

0450
4 === −

∆∆  

The total time that it takes to grow through successive intervals is obtained by summing the 
results from this equation for each interval using the Life equation. 

The data from the table that relates crack length (a) to the total time (t) to failure shows that the 
proof test must find a crack length between 0.189 and 0.225 inch to guarantee the integrity of the 
vessel with a factor of two life margin.  The crack length versus total time to failure data have 
been graphically displayed in the next figure, where it can be seen that for one year of growth the 
crack length is 0.245 inch (and for a factor of two life margin the crack length is 0.20 inch).  The 
required proof stress for the 0.20 inch long crack length is obtained from the Irwin criterion: 

 
( )202641
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2121 ..a.

KIC
p =
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

=
π

π

σ  

which is about 80 percent of the yield strength and therefore, the proof pressure (pp) must be at 
least 
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to ensure that all semicircular cracks longer than 0.2 inch are removed from the center section of 
the vessel prior to operation. 
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Graphical Procedure for Interpreting Crack Length  
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