
11.4 Approximate Solutions for Stress Intensity Factors 
This subsection discusses the procedures that one can use to obtain approximate stress intensity 
solutions for complicated crack problems.  Approximate solutions should only be used when the 
objective of the damage tolerant analysis is to bound the answer and when due care has been 
taken to understand all aspects of the cracking behavior.  Most typically, the approximate 
solutions are derived using known (handbook) solutions that individually account for the effects 
of crack geometry, global geometry and loading.  As noted in subsection 11.2.1, stress-intensity 
factors can be added for different types of loadings when the global and crack geometries are the 
same.  This section will concentrate on those cases where the analyst must take existing solutions 
for several different geometries and estimate the stress-intensity factor for the geometry of 
interest.  In those cases where the individual geometric effects can be accounted for by 
multiplication of factors, the analysis is referred to as compound analysis. 

There are three geometric factors that normally must be accounted for in an approximate damage 
tolerant analysis: stress concentration, finite width and crack shape.  The effects of all three 
factors on the stress-intensity factor can be established exactly using careful numerical analysis 
procedures.  However, the solution of damage tolerant problems requires more than the accurate 
development of the stress-intensity factor.  Frequently, the growth process causes the crack to 
constantly change its shape which significantly complicates the crack growth life analysis. 

In order to describe how the three geometrical effects can be estimated, a series of examples are 
presented.  In each case, the approximate solutions are based on known solutions.  If the actual 
solution is available, it is compared to the approximate solutions. 

11.4.1 Effect of Stress Concentration 
The effect of stress concentration is fairly easy to estimate for small cracks because the stress-
intensity factor for an elementary crack problem can be multiplied by the elastic stress 
concentration factor (kt).  Example 11.4.1 illustrates this point.  For longer cracks initiating at 
stress concentrations, the crack will be propagating through the stress field created by the stress 
concentration and the influence of stress gradient should be taken into account.  Example 11.4.2 
discusses an approximate method for estimating the stress intensity factor for a crack moving 
through a stress field generated by a stress concentration. 
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EXAMPLE 11.4.1 A Small Edge Crack at a Stress Concentration Site 

A geometrical description of the physical problem is provided in the figure, where a small edge 
crack is shown growing from the edge of a wing cutout.  The stress-intensity factor for an edge 
crack (small with respect to the element width) is found in Table 11.3.8, and is given by 

aK πβσ=  


























−+






+









































=

3
2
1

2
13700227520

2

2
2 W

asin.
W
a..

W
a
W
atan

W
asec π

π

π
πβ  

 
A Small Edge Crack Located at Stress Concentration 

The stress term (σ) in the general equation typically represents the remote stress in the uniformly 
loaded edge cracked plate.  This stress is also the stress that would exist along the line of crack 
propagation if no crack were present.  As indicated by the figure, the stress along the line of 
crack propagation (assuming no crack for a moment) for the given structural configuration is the 
product of the remote stress and the stress concentration factor (kt) associated with the cutout, 
i.e., the local stress is: 

 tlocal k×= σσ  

For the given structural configuration, the stresses along the line of crack propagation more 
closely represent the type of loading that the small edge crack would experience if it were in a 
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uniformly loaded edge cracked plate subjected to the higher stresses given by the equation 
above.  It is therefore suggested that the stress-intensity factor for the structural configuration 
given in the figure would be close to 

 ( ) ak   K t πβσ ×=  

In general, as long as one is dealing with small edge cracks in which the width or other 
geometrical effects are not important, the final equation provides a reasonable approximation to 
the stress-intensity factor for an edge crack in the vicinity of a stress concentration.  See Example 
11.4.2 for a discussion of stress gradient effects. 
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EXAMPLE 11.4.2 An Edge Crack Growing from a Stress Concentration Site 

One difficulty in utilizing the Example 11.4.1 final equation for cracks that emanate from a stress 
concentration site is that the stress concentration normally generates its own stress field.  The 
stress concentration stress field typically exhibits the highest stresses in the vicinity of the 
concentration and these high stresses decay as a function of distance from the stress 
concentration site.  The question that needs to be answered is:  If the stresses along the crack 
propagation path are not constant, as in the case of a uniformly loaded edge cracked plate, what 
stresses should be used to estimate the stress-intensity factor: 

 
Distribution of Stresses Normal to the Crack Path for a Radial Crack Growing from an 

Uniaxially Loaded Hole in a Wide Plate 

The stress distribution associated with an uncracked hole in a wide plate is shown in the figure.  
As can be seen, the (normal) stress drops off rapidly as a function of distance from the edge of 
the hole.  An evaluation of the normal stress right at the edge of the hole, i.e., the local stress, 
leads one to the fact that 

 3×= σσ local  

(which is obtained by letting R/X = 1 in the equation given in the figure).  Thus kt for the 
uniaxially loaded hole problem is three, i.e., kt = 3 and the stress-intensity factor for a very small 
crack of length a at the edge of the hole is 

 ( ) a   K πβσ 3×=  

One estimate of the stress-intensity factor for a longer crack would be given by the equation 
above; but, this estimate would be high since the stresses along the crack propagation path are 
noted to be dropping. 

11.4.4 



11.4.2 Effect of Finite Width 
As a crack tip approaches a free edge, its stress-intensity factor rapidly increases and tends to 
become infinite.  One can look at the width contribution as a separate (multiplicative) β factor in 
the same way that the width contribution affects the solution of the center-crack remotely loaded 
geometry. 

Recall that the stress-intensity factor for a loaded panel of finite width W is given by (see Table 
11.3.8) 
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which leads one to conclude that the (multiplicative) width effect β factor required to convert the 
infinite plate solution to the finite width solution is 
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Other width correction formulations yield similar results.  Most SIF solutions have the width 
correction included in the formulation if it is necessary.  If one is aware of the need the 
formulation should be checked before using it in an analysis. 
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