
11.2 Methodology For Determining Stress Intensity Factors 
The linear elastic fracture mechanics approach to the analysis of cracked structures depends on 
the calculation of stress-intensity factors (K) for the typical crack geometries of interest.   

The opening mode stress-intensity factor can always be expressed as 

aKI πβσ=  (11.2.1)

where σ is the nominal stress remote from the crack and a is the crack size.  The factor β is a 
function of crack geometry and of structural geometry.  Since the dimension of K is ksi√in. or 
equivalent, β must be dimensionless.  For a central crack of length, 2a, in an infinite sheet, the 
stress-intensity factor may be written 

aKI πσ=  (11.2.2)

Comparison with Equation 11.2.1 shows that for an infinite sheet β is unity.  Thus, β may be 
considered as a correction factor relating the actual stress-intensity factor to the central crack in 
an infinite sheet.  The correction factors for various geometrical conditions under a given load 
condition may be combined in the form of a product to account for the increase or decrease in the 
stress-intensity factor.  

As the linear elastic fracture mechanics approach to engineering problems became a typical 
design approach, a widespread need for stress-intensity factor solutions for typical geometries 
arose.  This need was met by a series of handbooks which presented available solutions in a 
compact format.  Some of these handbooks include  

• Handbook of Stress Intensity Factor (Sih, 1973),  

• The Stress Analysis of Cracks Handbook (Tada, et al., 1973),  

• Compendium of Stress Intensity Factors (Rooke & Cartwright, 1976), 

• Stress Intensity Factors Handbook (Murakami, 1987) 

The handbook solutions, which are typically fundamental, may be extended to more complex 
cases through the principle of superposition or by compound analysis.  The handbook solutions 
are also quite useful for bounding exact solutions as discussed in Section 11.4.  When the 
structural geometry and loading system is fairly complicated, engineers normally resort to 
numerical analysis procedures (e.g., finite element analysis) which have been proven for their 
accuracy in establishing stress-intensity factors. 

11.2.1 Principle of Superposition 
Because the linear elastic fracture mechanics approach is based on elasticity, one can determine 
the effects of more than one type of loading on the crack tip stress field by linearly adding the 
stress-intensity factor due to each type of loading.  The process of adding stress-intensity factor 
solutions for the same geometry is sometimes referred to as the principle of superposition.  The 
only constraint on the summation process is that the stress-intensity factors must be associated 
with the same structural geometry, including crack geometry.  Thus, stress-intensity factors 
associated with edge crack problems cannot be added to that of a crack growing radially from a 
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hole.  An example will illustrate the conditions under which one might linearly add stress-
intensity factors. 

EXAMPLE 11.2.1 Axial and Bending Loads Combined 

An edge crack of length a is subjected to a combination of axial and bending loads as shown.  
The stress-intensity factor for the edge crack geometry subjected to the tensile load (P) is given 
by 
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while that due to the bending moment (M) is given by 
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The stress intensity factor resulting from the combination of tensile and bending loads is given 
by the sum of KP and KM, so that 

 KTOTAL = KP + KM 

 

Edge Crack Geometry Loaded With Axial and Bending Loads 
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As shown by Example 11.2.1, if the geometry of the structure is described, the effect of each 
loading condition can be separately determined and the effect of all the loading conditions can be 
obtained by summing the individual conditions, i.e.,  

KTOTAL = K1 + K2 + K3 + . . . (11.2.3)

This particular property is quite useful in the analysis of complex structures.  Example 11.2.2 
(Wilhelm, 1970) further illustrates the principle of superposition. 

EXAMPLE 11.2.2 Remote Loading and Concentrated Forces Combined  

Many times in a particular aircraft design a part may develop cracks at rivet holes where the skin 
is attached to the frame or stringer.  This situation is depicted in the figure below.  It will be 
analyzed as a simple case in which the sheet is in uni-axial tension and the rivets above and 
below the crack are influential in keeping the crack closed.  (Tests of panels with concentrated 
forces superimposed on the uniform tension loading simulate crack growth behavior in the 
presence of rivets.)  The insert of the figure shows the local parameters necessary for 
determining the stress-intensity factors. 

 
Crack at Rivet In a Riveted Skin-Stringer Panel (No Crack Buckling) 

Assuming that a crack grows from the rivet hole, the total stress-intensity factor for this 
geometry is obtained using the linear superposition of stress-intensity factors.  Closer 
examination of the figure indicates that the loading can be decomposed as shown in the next 
figure.  The total stress-intensity factor is the sum of the remote loading and concentrated load 
induced stress-intensity factors.   
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Note:  The concentrated force induced stress-intensity factor solution presented is only 
applicable if the concentrated forces are applied along the centerline of the sheet and at a 
distance greater than 3 or 4 times the hole diameter.  Inasmuch as the concentrated forces are in 
an opposite direction to the uniform stress, and tend to close the crack, this stress-intensity is 
subtracted from the uniform extensional stress-intensity factor. 

With knowledge of the stress-intensity solution for this geometry, it is possible to determine 
what effect the rivet closure forces have on the local stress field for similar problems. 

Combined Uniform Tension Concentrated Force 
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Superposition of Stress intensities for Uniform Tension and Concentrated Force 

 

In some cases, the additive property of the stress-intensity factor can be used to derive solutions 
for loading conditions that are not readily available.  The process of deriving the stress-intensity 
factor for a center crack geometry, which is uniformly loaded with a pressure (p), shown in 
Figure 11.2.1, illustrates this feature.  Figure 11.2.2 describes the process whereby the remotely 
loaded center crack geometry is decomposed into a set of two center crack geometries which 
have loading conditions, that when added, result in the canceling of the crack line loadings.  The 
stress-intensity factor (K1) for the plate loaded with the remote stress condition (σ) and the crack 
closing stresses (also equal to σ) is zero, i.e. K1 = 0, because the crack is clamped closed under 
such conditions.  Thus, the equation for addition of stress-intensity factors  

21 KKKTOTAL +=  (11.2.4)

reduces to 
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20 KKTOTAL +=  (11.2.5)

so that the stress-intensity factor for a pressurized center crack with pressure (p) equal to σ is the 
same as that associated with remote loading, i.e. 

TOTALKaK == πσ2  (11.2.6)

 
Figure 11.2.1.  Internally Pressurized Center Crack 

 

Remotely Loaded = 
Remotely Loaded With 

Crack Line Closing 
Stresses 

+ Crack Line Opening 
Stresses 

KTotal = K1 + K2 

Figure 11.2.2.  Principle of Superposition Illustrated for Center Cracked Geometry 

Sometimes, it is difficult to visualize how one arrives at the values of the crack closing stresses.  
Consider the uncracked body with the uniformly applied remote loading as shown in Figure 
11.2.3a.  Determination of the stresses along the dotted line lead to the observation that the 
stresses here are equal to the remote stress (σ).  To obtain a stress-free condition along the dotted 
line, and thus simulate a cracked structural configuration, one must apply opposing stresses of 
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magnitude σ along the length of the dotted line as shown in Figure 11.2.3b.  The stresses along 
the dotted line generated by the applied remote stresses are the opening stresses (Figure 11.2.3a).  
The equal but opposite stresses are the crack closing stresses.  The reader should note that the 
stresses on the dotted line that are generated by the remote loading lead to the crack opening 
condition; these opening stresses lead to non-zero values for the stress-intensity factor (see 
Figure 11.2.2). 

Figure 11.2.3a.  Uniform Stresses Along 
Dotted Line Generated by Remote 
Loading 

Figure 11.2.3b  Opposing Stresses Applied 
Along the Dotted Line 

 

Figure 11.2.4 presents the concept of linear superposition of elastic solutions in a slightly 
different way so that the reader has a full appreciation of the procedure.  The structural element 
B is noted to be exactly the same as element A; the crack closing stresses exactly balance the 
effect of the remote stresses along the line so the structural element B still experiences uniform 
tension throughout.  Structural element B is further decomposed into elements D and E.  Note 
that the crack loading stresses shown on the structural element E are crack closing stresses and, 
therefore, result in a stress-intensity factor which is the negative of the remotely applied loading 
case, i.e.  KE = -KD. 
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Remote Loading W/O Crack  Remote Loading With 
Crack 

Crack Loading Stresses On 
Crack 

KA = 0 KB = 0 
KB = KD+KE=0 

KE = -KD 

Figure 11.2.4.  Illustration of Superposition Principle 

Since KD is known, 

aKD πσ=   

it follows that 

aKE πσ−=   

As we noted before, if the direction of stress in element E is reversed (becomes crack opening) 
then the stress-intensity factor is 

aK πσ=   

The loading on structural element A in Figure 11.2.5 can be decomposed into the series of 
loadings shown.  The stress-intensity factor for element A is obtained from the superposition of 
the three other loadings: 

KA = KB + KD - KE (11.2.7)

Since it is obvious that the loadings in elements A and E will result in the same stress-intensity 
factor, i.e. KA = KE, the stress-intensity factor for element A becomes 

[ ]DBA KK/K += 21  (11.2.8)

The stress-intensity factors for elements B and D are known, i.e.  
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Figure 11.2.5.  Application of Superposition Principle 

Now a more complex example is presented using the principle of superposition applied in a two-
step process.  Shown in Figure 11.2.6 is a structural element (F) in which intermediate values of 
load transfer occur through a pin loaded hole.  As shown, Step 1 consists of decomposing 
element F into two parts, such that in one part the pin reacts its entire load and the other part is 
remotely loaded.  The stress-intensity factor for element F is the sum of those generated by the 
decomposed elements, i.e.,  

2σ
BAF KKK +=   

where the superscript denotes the loading.   

Step 2 involves the determination of KA.   The pin reactive loading on element A is decomposed 
into the loading shown in Figure 11.2.6.  Using the logic previously illustrated in Figure 11.2.5, 
KA is determined as  

( )P
DBA KK.K += σ50   

The stress-intensity factor for the loading on element F is 

( ) 250 σσ
B

P
DBF KKK.K ++=  (11.2.10)

Note that while the stress-intensity factor solution formula for element B is the same in Steps 1 
and 2, the stresses used in each calculation are different (as indicated by the superscripts). 
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Figure 11.2.6.  Stress Intensity Factor for Pin-Loaded Hole (Bearing By-pass Problem)  

Obtained by Superposition 
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11.2.2 Developing Stress Intensity Factor Solutions 

There are a number of methods that are available for developing stress-intensity factor solutions 
for crack body problems.  Review articles and textbook chapters that summarize these methods 
are provided in Sneddon & Lowengrub (1969), Rice (1968), Paris & Sih (1965), Sih (1973a, 
1973b), Tada, et al. (1973), Rooke & Cartwright (1976), Wilhelm (1970), Parker (1981), Broek 
(1974) and Goodier (1969).  The basic solutions for simple geometries can be derived by means 
of classical methods of elasticity which employ complex stress functions Sneddon & Lowengrub 
(1969), Rice (1968), Westergaard (1939) and Mushkelishvili (1953). 

For finite size bodies containing cracks, the boundary conditions usually prohibit a closed form 
solution.  In such cases, numerical solutions can be obtained using methods such as the finite 
element method, the boundary collocation technique [Gross, et al., 1964; Newman, 1971], or the 
boundary integral method [Cruse, 1972; Cruse & Besuner, 1975].  Solutions for multiple load 
path geometries can sometimes be obtained from basic stress field solutions combined with 
displacement compatibility requirements for all the structural members involved [Swift & Wang, 
1969].  Section 4 describes this method and provides an example based on the displacement 
compatibility method. 

There are also several experimental methods that have been used to obtain (or verify) the stress-
intensity factor for cracked structural members.  These experimental methods include:  The 
compliance method, the photoelastic method [Smith, 1975; Kobayashi, 1973], the fatigue crack 
growth (inverse) method [James & Anderson, 1969; Grandt & Hinnericks, 1974; Gallagher, et 
al., 1974], and the interferometric method [Packman, 1975; Pitoniak, et al., 1974]. 

While a general knowledge of each stress-intensity factor solution method might be useful for 
attacking specific problems, detailed knowledge is required before any method can be applied to 
solve a given problem.  Beyond what is described elsewhere in these guidelines, an engineer can 
also utilize two separate solution techniques to solve any two-dimensional structural geometry or 
loading situation without access to a damage tolerant specialist.  One solution technique involves 
the generation of the stress for an uncracked body along the expected path of crack propagation.  
(The finite element method provides a powerful tool for generating stress at any point in an 
uncracked body).  The second solution technique involves the generation of the stress-intensity 
factor solution via an integral calculation that employs the stresses obtained for the case of the 
uncracked body along the expected path of the crack.  Two integral calculation technique types 
are available:  the Green’s function technique [Cartwright & Rooke, 1979, 1978; Cartwright, 
1979; Hsu & Rudd, 1978; Hsu, et al., 1978] and the weight function technique [Cartwright & 
Rooke, 1978; Cartwright, 1979; Bueckner, 1971; Rice, 1972; Grandt, 1975].  These two crack-
line loading techniques are reviewed in the following subsections. 

11.2.2.1 Green’s Function Technique 

The Green's function technique takes advantage of the additive property of the stress-intensity 
factor and is based on generalized point load solutions of crack problems.  For example, the point 
load solution for the central crack problem described in Figure 11.2.7 is given by: 
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This solution can be used to obtain the stress-intensity factor for stresses distributed over the 
crack faces by noting that the point load per unit thickness (P/B) in Equation 11.2.11 can be 
replaced by the product of the pressure stress (σ (x)) and the distance over which it acts (dx).  
Thus, the stress-intensity factor for the distributed stresses applied to the crack becomes: 

22 xa
xa

a
dxK a

a
−

+
∫= +
− π

σ  (11.2.12)

The stress-intensity factor for the case of uniform opening stresses applied to the crack, where σ 
is a constant, is determined to be K = σ√πa , as was expected from the discussion of the method 
of superposition described previously. 

 

 
Figure 11.2.7.  Point Load (P) Applied to the Crack Faces for a Central Crack Located in an 

Infinite Plate 

 
Figure 11.2.8.  Distributed Loading Applied to Crack Faces of the Central Crack 
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Given a point force solution for a geometry of concern, it is then possible to define the 
summation process that would integrate the effects of stress loading over the crack faces.  
Integral equations such as that defined by Equation 11.2.12 utilize the stress solutions from the 
uncracked body problem.  A number of point force stress-intensity factor solutions are presented 
in the tables given in Section 11.3 and an extensive review of the availability and application of 
Green’s functions can be found in Cartwright & Rooke [1979].  Other reviews can be found in 
Cartwright & Rooke [1978] and Cartwright [1979]. 

One of the cases reviewed by Cartwright and Rooke [Cartwright & Rooke, 1979] is of particular 
interest to structural engineers.  They presented the work by Hsu and Rudd [1978] on the 
development of a Green’s function for a diametrically cracked hole.  The Hsu and Rudd Green’s 
function was based on a series of finite-element determined stress-intensity factor solutions for a 
symmetrical set of point forces of the type shown in Figure 11.2.9.  The finite-element point 
force solutions were developed as a function of position for X (=x/a) < 0.9 and a limiting 
expression was given for X > 0.9.  The Hsu and Rudd Green’s function is shown in Figure 
11.2.10 for several values of a/R; also shown are Green’s functions for an edge crack and for a 
central crack.  Note that all the Green’s functions tend to infinity as X approaches 1.  It should 
also be noted that the Green’s functions presented are based on the following format 

( ) ( )∫= a dxa,xGx
a

K 0
1 σ
π

 (11.2.13)

which has been widely used.  Hsu and Rudd based their presentation of the Green’s function on 
an approach taken by Hsu, et al. [1978], wherein the Green’s function G(x,a) in Equation 11.2.13 
is obtained by multiplying the Hsu, et al. value GH by π, i.e. 

( ) ( )a,xGa,xG Hπ=  (11.2.14)

The complete table of GH(x,a) derived by Hsu, et al. can be found in Table 11.2.1.  Other work 
by Hsu and co-workers on lug-type problems can be found in Section 11.3. 

 

 
Figure 11.2.9.  Diametrically Cracked Hole With Symmetrically Located Point Focus 
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Figure 11.2.10.  Green’s Function for Geometry and Loading Described in Figure 11.2.9 

[Cartwright & Rooke, 1979; Hsu & Rudd, 1978; Hsu, et al., 1978] 
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Table 11.2.1.  Green’s Function For A Double Crack Emanating From An Open Hole In An 
Infinite Plate [Hsu, et al., 1978] 

a/r 
x/a 

.20 .30 .40 .50 .60 70 80 .90 1.00 1.40 1.60 2.00 2.40 3.00 

.00 .664 .629 .603 .595 .568 .575 .572 .554 .548 .571 .582 .594 .600 .611 

.10 .676 .639 .615 .604 .582 .583 .586 .569 .563 .587 .596 .603 .603 .615 

.20 .688 .645 .628 .617 .599 .596 .600 .589 .578 .604 .612 .613 .609 .624 

.30 .699 .658 .646 .633 .621 .613 .623 .610 .598 .627 .630 .625 .619 .639 

.40 .718 .679 .671 .656 .651 .639 .655 .639 .624 .656 .653 .642 .635 .664 

.45 .740 .691 .689 .671 .673 .657 .674 .658 .643 .674 .665 .654 .647 .680 

.50 .760 .708 .712 .689 .698 .681 .701 .682 .668 .692 .678 .670 .662 .699 

.55 .781 .732 .739 .712 .730 .711 .733 .708 .699 .709 .695 .692 .679 .723 

.60 .802 .764 .762 .746 .770 .752 .766 .739 .737 .730 .725 .721 .702 .753 

.70 .889 .868 .837 .838 .865 .867 .850 .827 .847 .819 .801 .811 .760 .842 

.75 .960 .946 .907 .911 .913 .960 .912 .911 .929 .888 .859 .884 .817 .905 

.80 1.071 1.089 1.044 1.030 .989 1.056 1.018 .995 1.021 .985 .955 .979 .904 .977 

.85 1.234 1.254 1.245 1.211 1.141 1.252 1.177 1.187 1.192 1.130 1.130 1.120 1.042 1.101 

.90 1.429 1.432 1.434 1.436 1.437 1.438 1.440 1.441 1.442 1.445 1.446 1.448 1.449 1.451 

 *For x/a >  0.9, ( )
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There are two cautionary remarks that must be made about the use of Green’s function 
techniques for solving crack problems.  First, if all the loading across the crack tip is not tensile, 
and if the stress-intensity factor is positive at the crack tip of interest, the crack faces at some 
distance away from the crack tip may have (mathematically) merged in a nonphysical 
overlapping manner and the estimated stress-intensity factor might be unconservatively low.  
Accordingly, one should check to determine if the crack displacements all along the crack are 
positive and thus non-overlapping to ensure validity of the solution.  Second, it is important in 
displacement boundary value problems to derive a Green’s function that accounts for the 
requirement that there be zero displacement on those boundaries where displacement conditions 
are applied when estimating the stress-intensity factor from the uncracked geometry solution.  
Typically, neglecting this requirement for displacement boundary value problems produces a 
stress-intensity factor that is conservatively high.  These two cautions apply equally well to the 
weight function technique. 

11.2.2.2 The Weight Function Technique 

The weight function technique can be derived using the definition of the strain energy release 
rate [Parker, 1981; Cartwright, 1979; Bueckner, 1971; Rice, 1972].  The stress-intensity factor is 
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obtained from the difference between the strain energy of a cracked structure and of the identical 
structure without a crack, and is given by: 

( ) ( )∫=
a

I dxa,xmxK σ  (11.2.15)

where the function m(x,a) is the Bueckner weight function, a function which is unique for the 
given geometry and is independent of the loading from which it was derived.  The weight 
function is defined as a function of  

1) material properties,  

2)  a known stress-intensity factor (K*) for the given geometry under a defined loading, and  

3) the crack opening ν*(x,a) corresponding to K*: 
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H is a material constant that is given by: 

=E for plane stress 

κ
µ

+
=

1
8H  

21 ν−
=

E  for plane strain 
(11.2.17)

with µ = shear modulus and κ is defined as a function of the stress state and Poisson’s ratio (ν) 
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(11.2.18)

For the infinite plate center crack problem K*, ν*, 
a
v
∂
∂ * , and m are given by the following 

equations: 

aK πσ=*   (11.2.19)
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and 
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The stress-intensity factor associated with a symmetrical pressure loading of σ(x) on the central 
crack faces is then given by 
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The reader is cautioned to note that Equations 11.2.23 and 11.2.12 differ.  However, both 
equations yield exactly the same stress-intensity factor solution when the pressure stress σ is a 
symmetrical function, i.e., the stress at x = xo is equal to the stress at x = -xo (0 < xo < a).  The 
reason that Equations 11.2.23 and 11.2.12 differ is that the Bueckner function in Equation 
11.2.12 was derived for a symmetrical loading whereas the Green’s function was derived for the 
more general case of unsymmetrical loading.  Thus, when deriving the weight function one 
should seek to locate stress-intensity factor (K*) and crack displacement (v*) solutions which are 
representative of the loading symmetry associated with the problems that are to be solved. 

A weight function for radially and diametrically cracked holes was developed by Grandt [1975] 
for through-thickness type cracks.  His solution is given by 
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where KB represents the appropriate (radial or diametrical) Bowie stress-intensity factor (Sectoin 
11.3), and the crack opening displacement η was obtained from finite-element solutions.  The 
displacements η were described by the conic section equation: 
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Here ηo is the displacement at the crack mouth (x=0) and m is the conic section coefficient from 
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In this instance, Y is the Bowie geometric factor 

a
KY B

σ
=  (11.2.27)

The finite-element results for the crack mouth displacement ηo were closely represented by the 
least squares expression 

i
i

oi
RaDR )/(

6

0 ∑
=

=η  (11.2.28)

where the coefficients Di are given in Table 11.2.2. 
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Table 11.2.2.  Least Squares Fit Of Finite Element Data For Crack Mouth Displacement 
[Grandt, 1975] 

 ( )i

oi
i RaDR∑=

=

6

0η  

Coefficient Single Crack Double Crack 
D0 -1.567 x10-6 1.548 x10-5 
D1 6.269 x10-4 5.888 x10-4 
D2 -6.500 x10-4 -4.497 x10-4 
D3 4.466 x10-4 3.101 x10-4 
D4 -1.725 x10-4 -1.162 x10-4 
D5 3.485 x10-5 2.228 x10-5 
D6 -2.900 x10-6 -1.694 x10-6 

 

Grandt has applied the weight function technique to a number of fastener-type cracked hole 
problems.  Using finite-element descriptions of the stress along the expected crack path for a 
hole that has been cold-worked (loaded) to a 0.006 inch radial expansion and then unloaded, 
Grandt was able to derive the stress-intensity factor shown in Figure 11.2.11 for a remote stress 
loading of 40 ksi.  Figure 11.2.11 also provides the stress-intensity factor solution for a remote 
stress loading of 40 ksi applied to a radially cracked hole without cold-working.  The dramatic 
difference in stress-intensity factors from the two cases has been shown to translate itself into 
orders of magnitude difference in crack growth rate behavior. 

 
 

Figure 11.2.11.  Stress-Intensity Factor Calibration for a Cold Worked Hole [Grandt, 1975] 

11.2.3 Finite Element Methods 
In all cases where an expression for the stress-intensity factor cannot be obtained from existing 
solutions, finite-element analysis can be used to determine K [Chan, et al., 1970; Byskov, 1970; 
Tracey, 1971; Walsh, 1971].  Certain aircraft structural configurations have to be analyzed by 
finite-element techniques because of the influence of complex geometrical boundary conditions 
or complex load transfer situations.  In the case of load transfer, the magnitude and distribution 
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of loadings may be unknown.  With the application of finite-element methods, the required 
boundary conditions and applied loadings must be imposed on the model. 

Complex structural configurations and multicomponent structures present special problems for 
finite-element modeling.  These problems are associated with the structural complexity.  When 
they can be solved, the stress-intensity factor is determined in the same way as in the case of 
simpler geometry.  This subsection deals with the principles and procedures that permit the 
determination of the stress-intensity factor from a finite-element solution. 

Usually quadrilateral, triangular, or rectangular constant-strain elements are used, depending on 
the particular finite-element structural analysis computer program being used.  For problems 
involving holes or other stress concentrations, a fine-grid network is required to accurately model 
the hole boundary and properly define the stress and strain gradients around the hole or stress 
concentration. 

Within the finite-element grid system of the structural problem, the crack surface and length 
must be simulated.  Usually, the location and direction of crack propagation is perpendicular to 
the maximum principal stress direction.  If the maximum principal stress direction is unknown, 
then an uncracked stress analysis of the finite-element model should be conducted to establish 
the location of the crack and the direction of propagation. 

The crack surfaces and lengths are often simulated by double-node coupling of elements along 
the crack line.  Progressive crack extension is then simulated by progressively “unzipping” the 
coupled nodes along the crack line.  Because standard finite-element formulations do not treat 
singular stress behavior in the vicinity of the ends of cracks, special procedures must be utilized 
to determine the stress-intensity factor.  Three basic approaches to obtain stress-intensity factors 
from finite-element solutions have been rather extensively studied.  These approaches are as 
follows: 

a) Direct Method.  The numerical results of stress, displacement, or crack-opening 
displacement are fitted to analytical forms of crack-tip-stress-displacement fields to 
obtain stress-intensity factors. 

b) Indirect Method.  The stress-intensity follows from its relation to other quantities 
such as compliance, elastic energy, or work energy for crack closure. 

c) Cracked Element.  A hybrid-cracked element allowing a stress singularity is 
incorporated in the finite-element grid system and stress-intensity factors are 
determined from nodal point displacements along the periphery of the cracked 
element. 

These approaches can be applied to determine both Mode 1 and Mode 2 stress-intensity factors.  
Application of methods has been limited to two-dimensional planar problems.  The state-of-the-
art for treating three-dimensional structural crack problems is still a research area. 

11.2.3.1 Direct Methods 

The direct methods use the results of the general elastic solutions to the crack-tip stress and 
displacement fields.  For the Mode 1, the crack tip stresses can always be described by the 
equations 
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where r and θ  are polar coordinates originating at the crack tip, and where x is the direction of 
the crack, y is perpendicular to the crack in the plane of the plate, and z is perpendicular to the 
plate surface. 

If the stresses around the crack tip are calculated by means of finite-element analysis, the stress-
intensity factor can be determined as 
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where i and j are used to represent various permutations of x and y. 

By taking the stress calculated for an element not too far from the crack tip, the stress intensity 
follows from a substitution of this stress and the r and θ of the element into Equation 11.2.30.  
This can be done for any element in the crack tip vicinity. 

Ideally, the same value of K should result from each substitution; however, the stress field 
equations are only valid in an area very close to the crack tip.  Also at some distance from the 
crack tip, nonsingular terms should be taken into account.  Consequently, the calculated K differs 
from the actual K.  The result can be improved [Chan, et al., 1970] by refining the finite-element 
mesh or by plotting the calculated K as a function of the distance of the element to the crack tip.  
The resulting line should be extrapolated to the crack tip, since the crack tip equations are exact 
for r = 0.  Usually, the element at the crack tip should be discarded.  Since it is too close to the 
singularity, the calculated stresses are largely in error.  As a result, Equation 11.2.30 yields a K 
value that is more in error than those for more remote element, despite the neglect of the 
nonsingular terms. 

Instead of the stresses, one can also use the displacements for the determination of K.  In general, 
the displacements of the crack edge (crack-opening displacements) are employed.  The Mode 1 
and Mode 2 plane strain displacement equations are given by 
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respectively.  The functions u and v represent the displacements in the x and y direction, 
respectively.  The crack tip polar coordinates r and θ are chosen to coincide with the nodal points 
in the finite element mesh where displacements are desired.  Since the above elastic field 
equations are only valid in an area near the tip of the crack, the application should be restricted to 
that area. 

11.2.3.2 Indirect Methods 

The indirect methods use relationships that exist between the stress-intensity factor (K) and the 
elastic-energy content (U) of the cracked structure.  These relationships are developed in Section 
1.3.2 along with a full discussion of the strain energy release rate (G) and compliance (C), i.e. the 
inverse stiffness of the system.  The stress-intensity factor is related to these parameters by the 
following: 
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where B is the plate thickness and E  is the elastic modulus E in plane stress and is E/ (1-ν2) in 
plane strain. 

The elastic energy content and the compliance of cracked structures are obtained for a range of 
crack sizes either by solving the problem for different crack sizes or by unzipping nodes.  
Differentiation with respect to crack size gives K from the above equations.  The advantage of 
the elastic-energy content and compliance methods is that a fine mesh is not necessary, since 
accuracy of crack-tip stresses is not required.  A disadvantage is that differentiation procedures 
can introduce errors. 

The strain energy release rate relationship (Equation 11.2.33) was derived based on the use of the 
crack tip stress field and displacement equations to calculate the work done by the forces 
required to close the crack tip.  The crack tip closing work can be calculated by uncoupling the 
next nodal point in front of the crack tip and by calculating the work done by the nodal forces to 
close the crack to its original size. 
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The concept is that if a crack were to extend by a small amount, ∆a, the energy absorbed in the 
process is equal to the work required to close the crack to its original length.  The general 
integral equations for strain energy release rates for Modes 1 and 2 deformations are 

( ) ( ,,0,
2

10
0

lim
1 drrvra

a
aG y

a
πσ −∆

∆
→∆= ∫

∆ )  

( ) ( .,0,
2

10
0

lim
2 drrura

a
aG xy

a
πτ −∆

∆
→∆= ∫

∆ )  
(11.2.36)

The significance of this approach is that it permits an evaluation of both K1 and K2 from the 
results of a single analysis. 

In finite-element analysis, the displacements have a linear variation over the elements and the 
stiffness matrix is written in terms of forces and displacements at the element corners or nodes.  
Therefore, to be consistent with finite-element representation, the approach for evaluating G1 and 
G2 is based on the nodal-point forces and displacements.  An explanation of application of this 
work-energy method is given with reference to Figure 11.2.12.  The crack and surrounding 
elements are a small segment from a much larger finite-element model of a structure.  In terms of 
the finite-element representation, the amount of work required to close the crack, ∆a, is one-half 
the product of the forces at nodes c and d and the distance (vc - vd) which are required to close 
these nodes.  The expressions for strain energy release rates in terms of nodal-point 
displacements and forces are (see Figure 11.2.12 for notations) 

 

Figure 11.2.12.  Finite-Element nodes Near Crack Tip. 
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11.2.3.3 Cracked Element Methods 

This approach involves the use of a hybrid-cracked element that is incorporated into a finite-
element structural analysis program.  To date, only two dimensional crack problems can be 
solved with the cracked-element approach.  Elements have been developed [Byskov, 1970; 
Tracey, 1971; Walsh, 1971; Gallagher, 1978; Jordon, et al., 1973; Atluri, et al., 1974; Hellen, 
1979] that allow a stress singularity to occur at the crack tip. 

The cracked element consists of boundary nodal points around the geometrical boundary of the 
element.  The element is either contained within the complete finite-element model or is solved 
separately using the results of finite-element analysis.  In either case, the crack surface is 
simulated by unzipping a double-noded line along the line of expected crack extension.  This 
builds into the structural model the proper stiffness due to the presence of the crack.  The 
variation of stress-intensity factors (K1 and K2) with crack length is determined by progressively 
unzipping the sets of coupled nodes. 

Studies have been conducted on the variation of stress-intensity factors with cracked-element 
size and location [Jordon, et al., 1973; Atluri, et al., 1974].  These results define some definite 
guidelines in using cracked-element models.  First, the distance from the crack tip to the cracked-
element nodal points should be as constant as possible.  Secondly, for long edge-cracks or cracks 
emanating from holes, the cracked element should only contain an area very near the crack tip. 
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